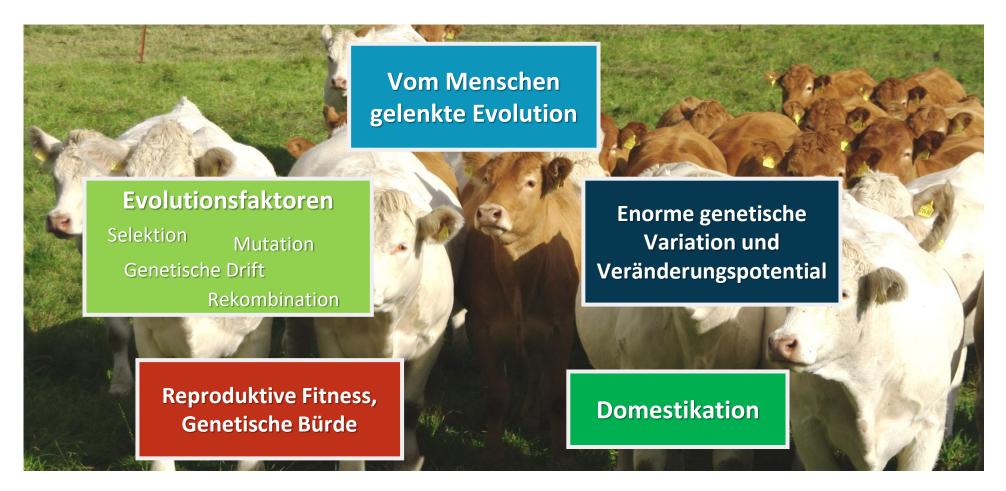


Grundlagen der Züchtung bei Nutztieren

Crandiagen der Zachtang bei Matztiere



Dr. Uwe Bergfeld

Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie Abteilung 07 – Landwirtschaft, Waldheimer Str. 219 | 01683 Nossen

Was ist Tierzüchtung?

Züchten heißt in Generationen denken


Praktische Tierzüchtung über Jahrtausende

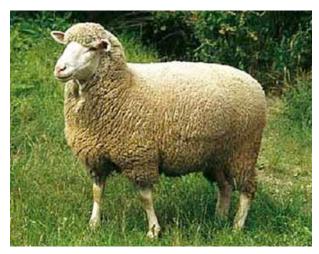
Die Guten ins Töpfchen, die Schlechten ins Kröpfchen

Laufenten

Sachsenhuhn

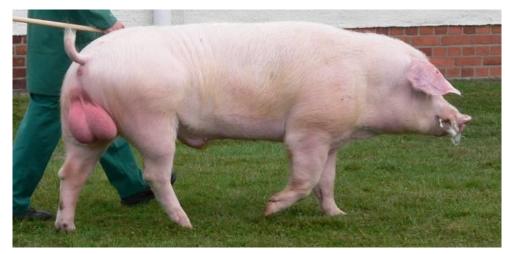
Seidenhuhn

Kröpfer-Taube



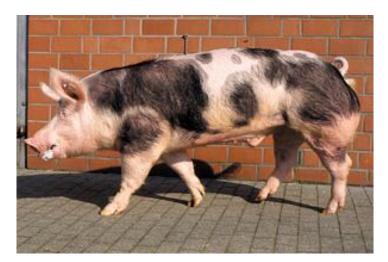
Merinofleischschaf

Jakobsschafe 6 | 28. Februar 2023 | Dr. Uwe Bergfeld


Kamerunschaf

Texel

Göttinger Minischwein



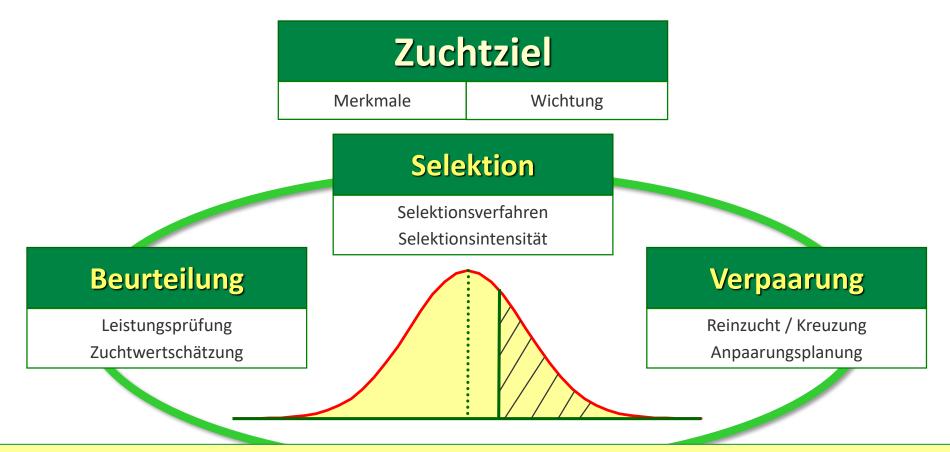
Landrasse

Wildschwein

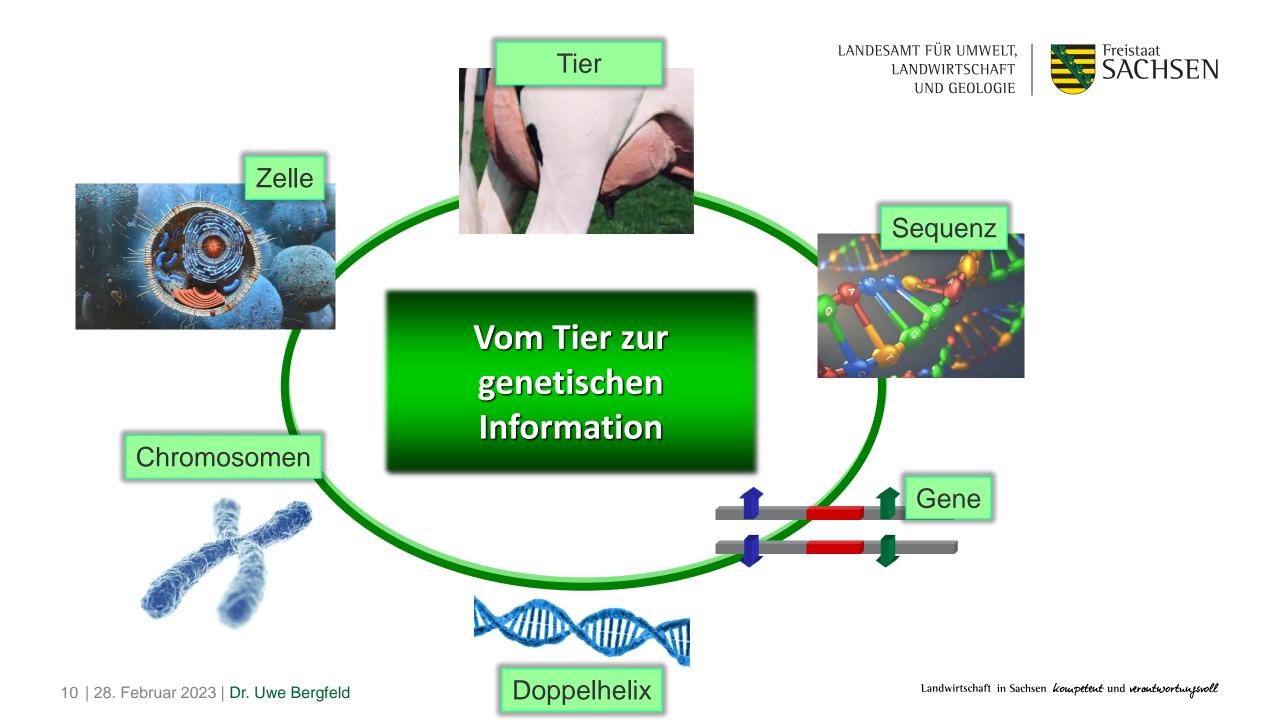
Pietrain Landwirtschaft in Sachsen kompetent und verantwortungsvoll

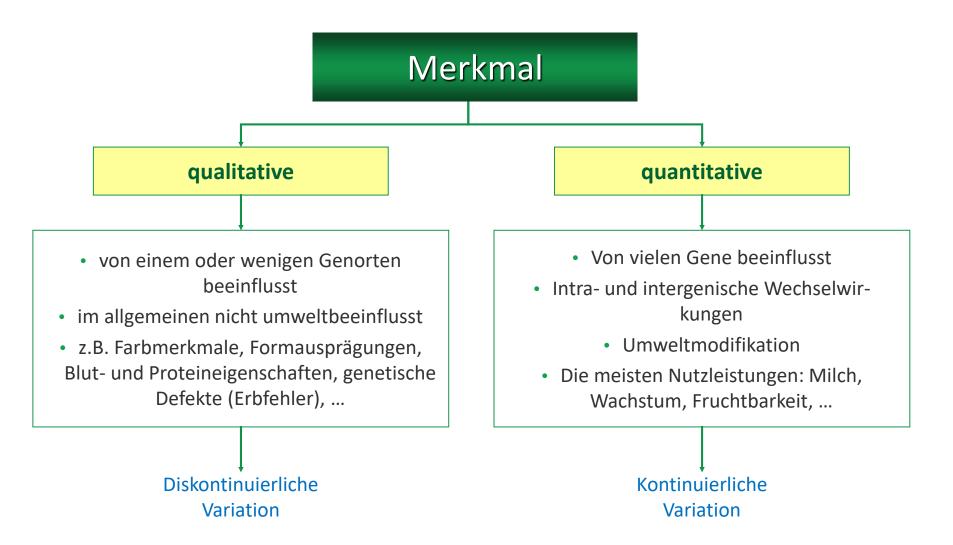
Deutsche Holsteins

Dexter 8| XX. Monat 2016 | Name des Präsentators


Schottisches Hochlandrind (Highland Cattle)

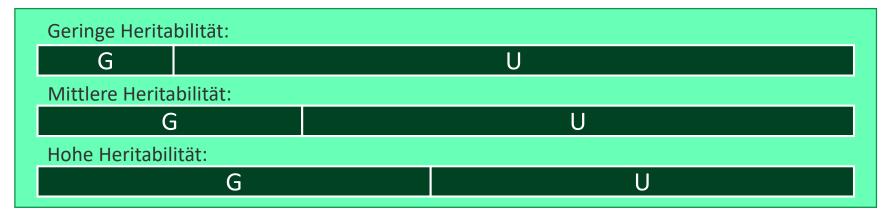
Limousin

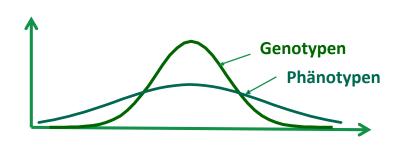

Hauptelemente der Tierzucht


Systematische Züchtung setzt zwingend ein Zuchtprogramm voraus

Züchtung heißt in Generationen denken!

Genetischer Hintergrund von Merkmalen




Heritabilität – zentraler Parameter der Tierzucht

Phänotypische Varianz = Genetische Varianz + umweltbedingte Varianz

$$Heritabilität = h^{2} = \frac{\sigma_{g}^{2}}{\sigma_{p}^{2}} = \frac{genetische Varianz}{ph \ddot{a}notypische Varianz}$$

Geringe Heritablität ((7,15) Fruchtbarkeit, Vitalität Krankheitsresistenz, Verhalten
Mittlere Heritabilität (0, 0,30)	15 Die meisten Leistungsmerkmale
hohe Heritabilität (0,30) Exterieur

Einflussfaktoren auf den Selektionserfolg

Zentrale Formel der Tierzucht

Selektionsintensität	Genauigkeit der Zuchtwertschätzung $d_s \bullet r_{\stackrel{\wedge}{ZW},ZW} \bullet \sigma_g$	Genetische Variabilität
Selektionsintensität		

Tierart	RR Väter	RR Mütter	GI Väter	GI Mütter			
Milchrind	2-5	80-90	5-6	6-7			
Mastrind	3-6	40-50	3-4	5-6			
Schwein	1-2	10-15	1-2	2-3			
Schaf	2-4	45-55	3-5	4-5			
Pferd	2-4	30-45	8-15	8-11			
Geflügel	1-2	1-2	1	1			

RR = Remontierungsrate (%), GI = Generationsintervall (Jahre)

Voraussetzungen für züchterischen Erfolg

- Genetische Variabilität
- Identität kennen und wiedererkennen
- Abstammung
- **Exakte Leistungserfassung**
- Bedingungen der Leistungserbringung

Hauptelemente der Tierzucht

Zuchtziel

Merkmale

Wichtung

Selektion

Selektionsverfahren Selektionsintensität

Beurteilung

Leistungsprüfung Zuchtwertschätzung

Verpaarung

Reinzucht / Kreuzung Anpaarungsplanung

Reproduktionsbiologische und molekulargenetische Verfahren in der Tierzucht

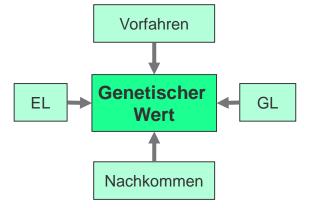
Zuverlässigere Erkennung des genotypischen Wertes

Frühere Erkennung des genotypischen Wertes

Erweiterung des Reproduktionspotentials

Beeinflussung der genetischen Variabilität

Optimierung der Tierzucht


LANDESAMT FÜR UMWELT,
LANDWIRTSCHAFT
UND GEOLOGIE

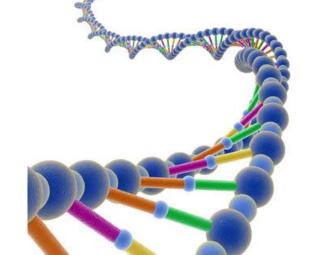
Freistaat
SACHSEN

durch zuchtorganisatorische, mathematische, reproduktionsbiologische und molekulargenetische Verfahren

Zuverlässigere Erkennung des genetischen Wertes

- Genauigkeit der LP
- Genauigkeit der ZWS
- Abstammungsnachweis, Identitätskontrolle
- Nutzung genomischer Informationen

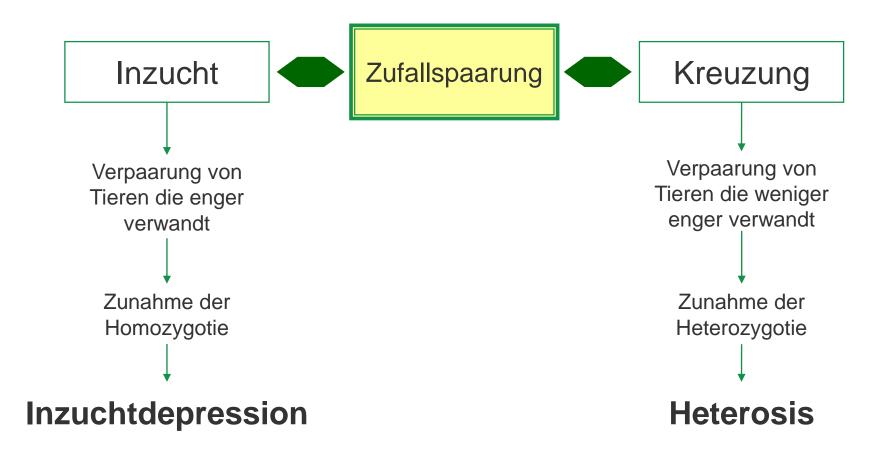
Frühere Erkennung des genetischen Wertes


- Moderne Methoden der Zuchtwertschätzung
- Erbfehlerdiagnose
- Markergestützte Selektion
- Genomanalyse

Erweiterung des Reproduktionspotentials

- · Künstliche Besamung
- Spermakonservierung
- Embryotransfer, OPU/IVP
- Spermasexing
- Klonierung

Beeinflussung der genetischen Variabilität


- Gentransfer
- Genome Editing

Verpaarungssysteme

ca. 2-20% per 10% Zunahme von Heterozygotie / Homozygotie

Verpaarungssysteme in der Tierzucht

Reinzucht

Verpaarung von Tieren, die zur gleichen Population gehören

Nutzung der genetischen Variation innerhalb ausgewählter Populationen durch Selektion und gerichtete Paarung

Kreuzung

Verpaarung von Tieren verschiedener Populationen

Systematische Nutzung der genetischen Unterschiede zwischenverschiedenen Zuchtpopulationen

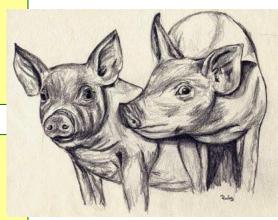
Nutzung von Heterosiseffekten Kombination positiver Eigenschaften verschiedener Rassen "Umgehung" von Merkmalsantagonismen

Kreuzung mündet wieder in Reinzucht

Zuchttier- = Nutztierbestand

- Veredlungskreuzung
- Kombinationskreuzung
- Verdrängungskreuzung

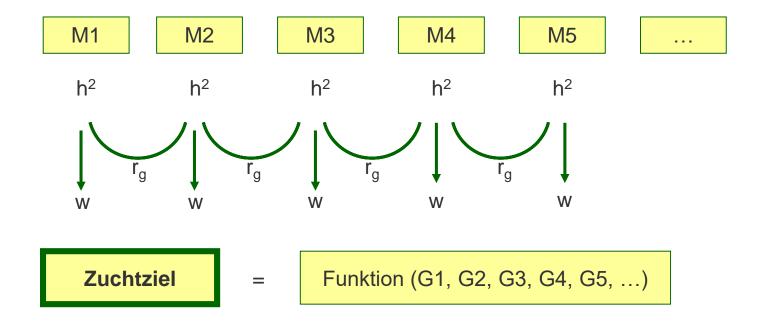
Kreuzung fordert Reinzucht als bleibende Voraussetzung


Zuchttier- <> Nutztierbestand

Kontinuierlich:

- Wechselkreuzung
- Rotationskreuzung

Diskontinuierlich:


- Einfachkreuzung
- Mehrfachkreuzung

Definition von Zuchtzielen ...

LANDESAMT FÜR UMWELT, LANDWIRTSCHAFT UND GEOLOGIE

- Auf welche Merkmale will ich selektieren?
- Inwieweit sind diese Merkmale genetische bedingt?
- Wie sind die genetischen Beziehungen zwischen den Merkmalen?
- Welche Bedeutung kommt den einzelnen Merkmalen zu?

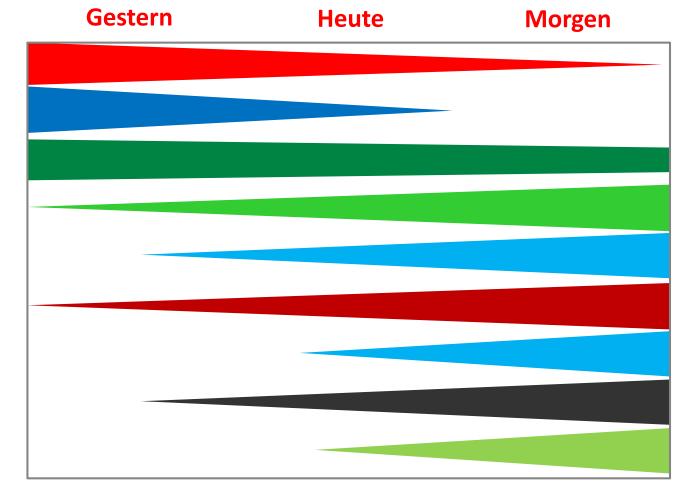
Zuchtziele gestern, heute und morgen

Ernährungssicherung

Leistung

Fruchtbarkeit

Fitness, Funktionalität


Qualität

Effizienz

Tierschutz

Gesundheit

Umwelt

Entwicklungsetappen der Tierzucht

Bis Mitte 19. Jh

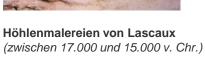
- Tierzucht weitestgehend intuitiv
- Vielzahl regionaler Rassen und Schläge
- Nutzung: Dung, Militär, Zugkraft, Ernährung

Bis Mitte 20. Jh

- Beginn der systematischen Tierzucht
- Erste Herdebücher, Zuchtprogramme und Zuchtorganisationen
- Systematische Leistungsprüfung
- Zuchtziele zur Ernährungssicherung

Bis 90er 20. Jh

- Etablierung von Besamungszuchtprogrammen
- Systematische Nutzung Kreuzungszucht
- Populationsgenetik prägt Zuchtmethodik
- Zunehmende Nutzung von Reproduktionstechniken


Bis heute

- Zunehmende Nutzung der Molekulargenetik
- Genomische Selektion bringt Umbau der Zuchtprogramme
- Nutzung Bioinformatik, Big Data

Quelle: http://de.wikipedia.org/wiki/H%C3%B6hle_von_Lascaux

1900 2000

Wiederentdeckung der Mendel'schen Gesetze um 1900 Aufklärung Doppelhelixstruktur Watson und Crick 1953

Breite Anwendung

der Künstlichen

Besamung

1983 Entwicklung der Polymerase-Kettenreaktion (PCR) Leistungsfähige IT-Technik verfügbar

Sequenzierung der Genome der Nutztiere

Wichtiger Erkenntniszuwachs in der Populationsgenetik

Markergestützte Selektion Genomische Selektion

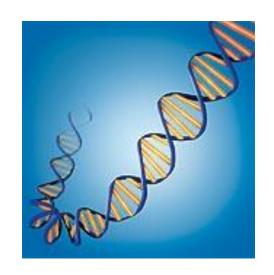
1986 Wilmut klont identische Lämmer

Breite Einführung der BLUP-Zuchtwertschätzung

Gene Editing

Die Sequenzierung des Genoms des Menschen

Daniel Huson 2011


Science

Sequenzierungserfolge

- 2000 Genom der Fruchtfliege Drosophila melongaster sequenziert
- 2001 Detailliertere Karte des Humangenoms → kostete mehrere Milliarden US-Dollar
- 2002 Genom der Maus sequenziert
- 2005 Entziffertes Erbgut: Hunde-Genom
- 2009 Rindercode geknackt Forscher entschlüsseln Erbgut von Kühen vollständig → kostete noch 50 Millionen US-Dollar
- 2009 Genom von Schweinen entziffert
- 2009 Pferdegenom entschlüsselt
- 2012 Schafgenom sequenziert
- 2013 Ein Forscherteam von der Chinese Academy of Fishery Sciences entschlüsselte das Genom des Karpfens Cyprinus carpio.

→ Sequenzierung ist heute Routine

gcccgcaccgatcgccttcccaacagttgcgcagcctgaatggcgaatggcgctttgcctggtttccgg
gtgccggaaagctggctggagtgcgatcttcctgaggccgatactgtcgtcgtcccctcaaactggcag
gatgcgcccatctacaccaacgtaacctatcccattacggtcaatccgccgtttgttcccacggagaatc
actcgctcacatttaatgttgatgaaagctggctacaggaaggccagacggcgaattatttttgatggcgt
tcatctgtggtgcaacgggcgtgggtcggttacggccaggacagtcgtttgccgtctgaatttgacctg
gcgccggagaaaaaccgcctcgcggtgatggtgctgcgttggagtgacggcagttactggaagatcag
atgagcggcattttccgtgacgtctgttgctgcataaaccgactacacaaatcagcgatttccatgttg
tgatgatttcagccgcgtgatggtgctgcatgaagttcagattgcggcgagttgcgtgacacctacg
ttatggcagggtgaaacgcaggtcgccagcggcaaccgcgcctttcggcggtgaaattatcgatgagcg
gatcgcgtcacactacgtctgaacgtcgaaaacccgaaactgtggagcgcgaaattaccgaatctca
gaactgcacaccgccgacggcacgctgattgaagcagaaccgcagttcggtttccgcgaggtgc
tctgctgctgctgaacggcaagccgttgctgattcgagggcgttaaccgtcacgagcatcacctctctgca
gatgagcagaaggtggaaggaggagaatacctgctgatgaggagaacaactttaacgccgtgcgctgttc
catccgctgtggtacacgctgtgcgaccgctacggcctgatgtggtgaagaacaactttgaaacc
catccgctgtggtacacgctgtgcgaccgctacggcctgtatgtggtgagaagaccaatattgaaacc
catccgctgtggtacacgctgtgcgaccgctacggcctgtatgtggtgatgaagaccaatattgaaacc

Genomische Selektion

- Revolution in der Tierzucht?

Das Zuchtsystem befindet sich im Umbruch

"Ohne Genomischen Zuchtwert keine Stierselektion mehr möglich!"

Genomische Selektion: Schöne neue Welt?

Ein Quantensprung in der Tierzucht ...

Revolution durch die Genomische Selektion

Genomische Selektion beim Schwein - von der Utopie zur Realität

LANDESAMT FÜR UMWELT, LANDWIRTSCHAFT UND GEOLOGIE

Abteilung 9 – Tierische Erzeugung

Am Park 3, 04886 Köllitsch

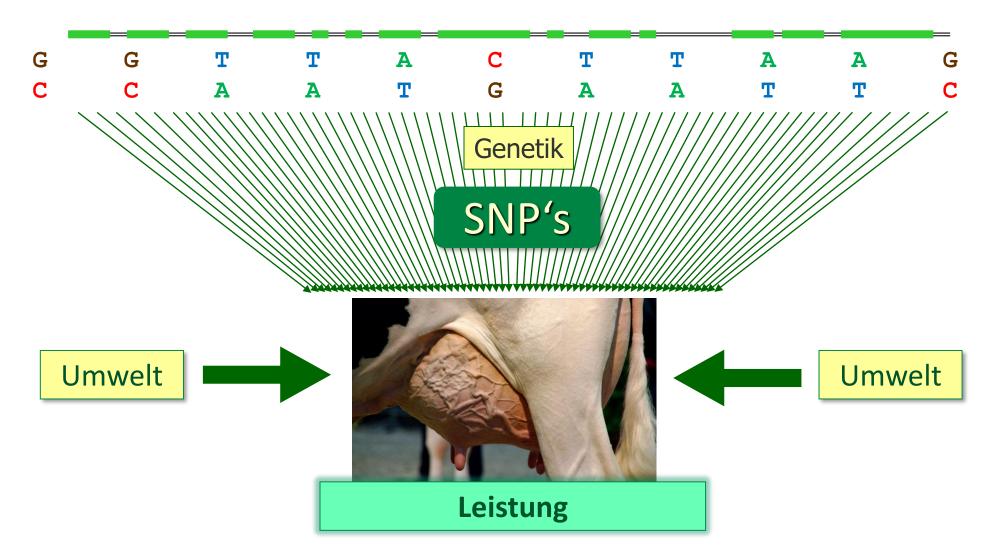
Internet: http://www.smul.sachsen.de/lfulg

Bearbeiter: Dr. Roland Klemm, Dr. Ralf Fischer; Dr. Uwe Bergfeld

E-Mail: roland.klemm@smul.sachsen.de

Tel.: 034222 46 2100

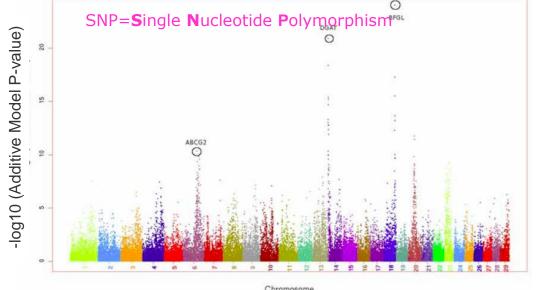
Redaktionsschluss: 20.08.2010


Genomische Selektion in der Tierzucht ist praxisreif!

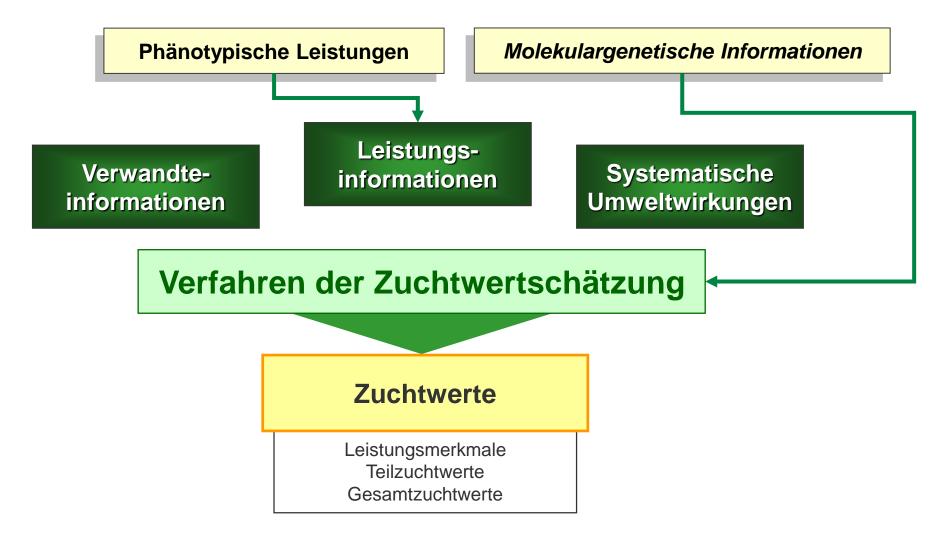
Erstmals offizielle genomisch verbesserte Zuchtwerte für Milchrindbullen veröffentlicht!

Fakten – Hintergründe - Rechtslage

Prinzip der Genomischen Selektion


Prinzip der Genomischen Selektion

	SNP Position			7	ΪE	ere	9											_
	171 296 468	С	С	С	С	С	С	С	С	С	С	Α	Α	Α	Α	Α	Α	Α
	171 296 469	G	G	G	G	G	Α	Α	Α	Α	Α	G	G	G	G	G	G	G
	171 296 480	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	Α
<u>_</u>	171 296 502	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	Т
S	171 296 514	Τ	T	T	T	T	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
	171 296 530	Α	Α	Α	Α	Α	G	G	G	G	G	G	G	G	G	G	G	G
	171 296 567	С	С	С	С	С	T	T	T	T	T	С	С	С	С	С	С	С
	171 296 615	G	G	G	G	G	G	G	G	G	G	G	G	G	G	Α	Α	Α
	171 296 640	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	G
	171 296 681	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	Т

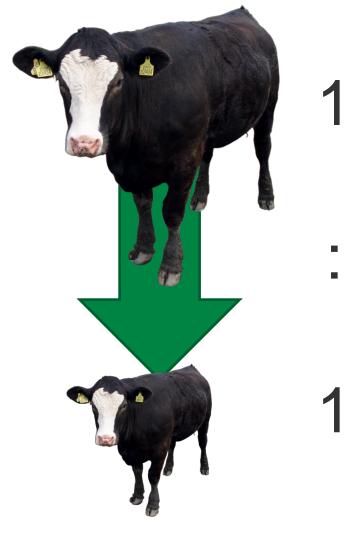

✓ Typisierung der Individuen nach SNP-Genotypen

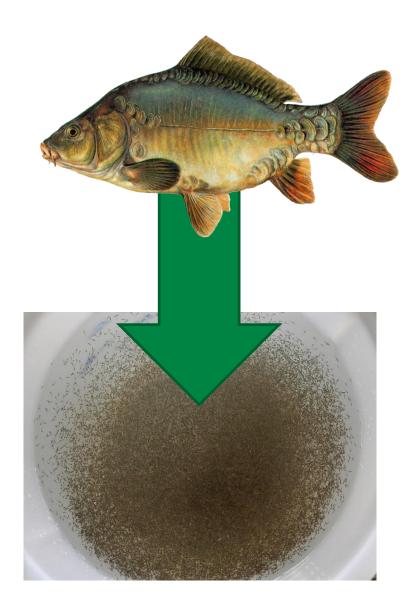
☑ Bestimmung des genetischen Wertes der SNP-Genotypen

Grundprinzip der Zuchtwertschätzung

Vorteile der Genomischen Selektion

- Höhere Sicherheit der Zuchtwertschätzung
- **Frühzeitige Erkennung** des genetischen Wertes → Geringeres Generationsintervall
- Keine aufwändigen Nachzuchtprüfprogramme mehr nötig
- Bessere Erkennung genetischer Defekte + sichere Abstammungskontrolle
- Optimierte SNP-basierte **Anpaarung**
- Effizienzsteigerung der Zuchtprogramme


Wert der Züchtungsarbeit bei Fischen


- Der Karpfen ist bei weitem die am längsten domestizierte Fischart der Aquakultur.
- In jüngerer Zeit wurden Atlantischer Lachs, der Kanalwels und Tilapia genetisch verbessert.
- I Mit dem Erfolg der Zuchtprogramme und der Verwendung dieser verbesserten Rassen in vielen Zuchtsystemen entsteht das Problem der Interaktion zwischen genetisch verbesserten Aquakulturbeständen und ihren Wildbeständen. Diese wilden Verwandten sind Grundlage der (traditionellen) Fischerei.
- Aquakulturzüchtung kann andererseits helfen, das Aussterben der wilden Verwandten zu minimieren, wie es bei vielen Nutztieren und -pflanzen der Fall ist

Biologische Besonderheiten beim Fisch im Vergleich zu landwirtschaftlichen Nutztieren

- Vermehrungsrate
- Äußere Befruchtung
- Hoher Homozygotiegrad → Inzuchtrisiken
- Auftreten von Polyploidie
- I Gynogenese, Androgenese, mögliche Geschlechtskontrolle
- I Variabilität bei der Chromosomenzahl innerhalb eines Individuums (Mosaike) und innerhalb von Populationen
- Schwierigere Identifikation der Einzeltiere
- Schwierigere Zuordnung zur Abstammung

Vermehrungsraten bei landwirtschaftlichen Nutztieren

1.000.000

Züchtungsmethoden in der Aquakultur

- Selektionszüchtung (Positive Massenauslese)
- Hybridisierung und Kreuzungszüchtung
 - Intraspezifisch (innerhalb der gleichen Art)
 - Interspezifsch (zwischen Arten, z. B. = Bachsaibling x Bachforelle = Tigerforelle
- Chromosomensatzmanipulation (Polyploidisierung)
- Geschlechtskontrolle (je nach Fischart):
 - all-male (z. B. Tilapia)
 - all-female (z. B. Forellen)
- Gentransfer (AquAdvantage®-Lachs)

Wichtig: Beachtung von bei Fischen sehr bedeutenden Genotyp-Umwelt-Interaktionen

Chromosomensatzmanipulation

- Bei Fischen und Schalentieren ist es möglich, ganze Chromosomensätze durch Unterbrechung des Zellteilungsprozesses in der frisch befruchteten Eizelle zu manipulieren.
- Diese Techniken sind bei h\u00f6heren Organismen im Allgemeinen nicht m\u00f6glich.
- I Es gibt vier Arten der Manipulation, die häufig angewandt werden:
 - Gynogenese,
 - Androgenese,
 - Triploidie
 - I Tetraploidie.

- Der Karpfen (Cyprinus carpio) ist eine evolutionär tetraploide Art (doppelter Chromosomensatz aller anderen bekannten Cypriniden)
 - Karpfenkaryotyp enthält 2n = 100Chromosomen
- Die Tetraploidisierung fand vor etwa 5,6 bis 11,3 Millionen Jahren statt
- Grund für besondere Raschwüchsigkeit und Maximalgröße?

Genmanipulation

AquAdvantage® - Lachs von der FDA zugelassen

- Ende der 1990er Jahre gentechnisch veränderte (gv) Lachse von der Firma AquaBounty Technologies entwickelt
- I Zwei Gene in das Genom von Lachsen übertragen:
 - ein Gen für ein Wachstumshormon einer anderen Lachsart (Königslachs, Oncorhynchus tschawytscha)
 - ein Regulationsgen eines Fisches (Zoarces americanus), der an kalte Meeresregionen angepasst ist
- Wachsen ganzjährig und erreichen bereits innerhalb von 18 bis 20 Monaten ihr Schlachtgewicht von etwa sechs Kilogramm
- Im November 2015 hat die FDA den AquAdvantage Lachs zugelassen
 - I das erste gentechnisch veränderte Tier, welches für den menschlichen Verzehr zugelassen ist
 - Breiter Widerstand + Klagen
- → Technische Möglichkeiten des Gentransfers müssen auch vom Verbraucher akzeptiert werden.

Züchtungsarbeit beim Karpfen

- Die Domestikation des Wildkarpfens begann unabhängig voneinander in Asien, später in Europa.
- Urform der heutigen europäischen Teichkarpfen dürften Wildkarpfen aus der Donau gewesen sein.
- Durch die Anlage von Teichen mit ihrem gegenüber natürlichen Gewässern günstigeren Temperaturregime wurde es möglich, Karpfen in Regionen aufzuziehen und zu vermehren, in denen normalerweise keine natürliche Reproduktion mehr erfolgt.
- I Es hat nie **Zuchtbücher oder Zuchtvorschriften** gegeben, vergleichbar mit der Nutztierzucht. Eine planmäßige überörtliche Zuchtarbeit ist nie über die Anfänge hinaus gekommen. Maximal Zucht einzelner Teichwirte.
- In den Jahren um 1920 hat die DLG (Deutschen Landwirtschaftsgesellschaft) versucht, Ordnung in die Rassenproblematik zu bringen → war nicht haltbar
- Später entstand der Begriff Karpfenstamm = Zuchtform, die durch natürliche und künstliche Selektion an die Bedingungen in einem Zuchtbetrieb besonders gut angepasst ist.
- Wirklicher Zuchtfortschritt der zu wirtschaftlicheren und konkurrenzfähigeren Merkmalen wird z.Z. in Deutschland kaum generiert.

Die Vererbung qualitativer und quantitativer Merkmale beim Karpfen

- Karpfen können sich im Phänotyp recht deutlich voneinander unterscheiden
- Das betrifft sowohl die Beschuppung, die Körperform, aber auch die Färbung

Tata scaly carp

Amur wild

Duna wild carp

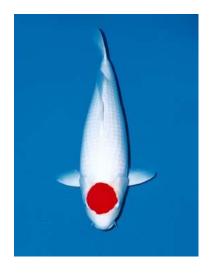
Beschuppung

- I Die Art der Beschuppung des Karpfens wird von zwei autosomalen, nicht miteinander gekoppelten Genen (S und N) mit jeweils zwei Allelen bestimmt (MENDELSCHEN Vererbungsregeln)
- Bei Karpfen werden folgende Phäno- bzw. Genotypen unterschieden:
 - Schuppenkarpfen (Genotypen SSnn oder Ssnn)
 - Spiegelkarpfen (Genotyp ssnn)
 - Zeilkarpfen (Genotypen SsNn oder SSNn)
 - Nacktkarpfen (Genotyp ssNn)
- I Von diesen Beschuppungsformen können nur Spiegel- und homozygote Schuppenkarpfen (Genotyp SSnn) **reinerbig** vermehrt werden.
- I Zeil-, Nackt- und heterozygote Schuppenkarpfen lassen sich nur spalterbig vermehren → die Nachkommen spalten auf
- I Homo- bzw. heterozygote Schupper können nur durch Vermehrung differenziert werden
- I Zeilkarpfen wie auch Nacktkarpfen sollen nicht vermehrt werden → Genotyp NN ist Letalfaktor - diese Fische sind nicht lebensfähig

Vermehrung zweier heterozygoter Schuppenkarpfen Ssnn x Ssnn

	Sn	sn
Sn	SSnn	Ssnn
sn	Ssnn	ssnn

Im Ergebnis entstehen:


- 25 % homozygote Schupper (Genotyp SSnn),
- 50 % heterozygote Schupper (Ssnn) und
- 25 % Spiegelkarpfen (ssnn)

Färbung

- Farben werden beim Karpfen überwiegend nicht monogen vererbt, was die gezielte Zucht speziell gefärbter Fische schwer macht (Ausnahmen: Bläulinge, Goldvarianten u.ä.)
- Darum werden Spitzen-Kois zu schwindelerregenden Preisen vermarktet (Laichkarpfen von US \$ 0,5 Mill. sind keine Seltenheit)

Tancho Kohaku: Die Krönung japanischer Koizucht

Intraspezifischen Diversität bei Karpfen

- Es bestanden erhebliche Informationslücken von genetische Vielfalt von Zuchtkarpfen
- I Verschiedene Projekte zur genetischen Vielfalt von Zuchtkarpfen
- I Ausreichende genetische Diversität zwischen den Zuchtfischbeständen mehr regions- bzw. herkunftsbedingt, weniger infolge züchterischer Bearbeitung
- I Überwiegend Familienbetriebe und daher finanziell nicht in der Lage, moderne Methoden der Selektion wie z. B. Familienselektion mit Zuchtdokumentation durchzuführen
- I Geringe genetische Inzuchtkoeffizienten
- I Potential zur Steigerung der Leistungsfähigkeit wird nicht ausreichend genutzt

Herkunftsvergleich Karpfen

Abschlussbericht 2016

Gert Füllner ¹⁾, Matthias Pfeifer ¹⁾, Sebastian Lippold ¹⁾, Thomas Heller ¹⁾, Andrea Standke ¹⁾, Klaus Kohlmann ²⁾, Dieter Steinhagen ³⁾, Grit Bräuer ⁴⁾, Kerstin Böttcher ⁴⁾, Andreas Müller-Belecke ⁵⁾

- Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie
- 2) Leibnitz-Institut für Gewässerökologie und Binnenfischerei e.V. Berlin-Friedrichshagen
- Stiftung Tierärztliche Hochschule Hannover
- 4) Sächsische Tierseuchenkasse, Fischgesundheitsdienst
- Institut für Binnenfischerei e. V. Potsdam-Sacrow

LANDESAMT FÜR UMWELT, LANDWIRTSCHAFT UND GEOLOGIE Freistaat SACHSEN

Ziele

- Die Vielfalt der aquatischen genetischen Ressourcen langfristig erhalten → Evaluation, Charakterisierung, Dokumentation
- Erhaltung und Wiederherstellung aquatischer Ökosysteme
- I Erhaltung, nachhaltigen Nutzung und Wiederansiedlung aquatischen genetischen Ressourcen

Kernaussage

I Von der ordnungsgemäßen Binnenfischerei gehen heute **kaum Gefährdungen** für Artenvielfalt und Fischbestände aus.

Fischereibehörde

- I Monitoring des Zustands der Fischartengemeinschaften, Fischartenkataster
- I Besatzfische als ein wichtiger Bestandteil der fischereilichen Hege
- I Programm zur Wiedereinbürgerung des Atlantischen Lachses

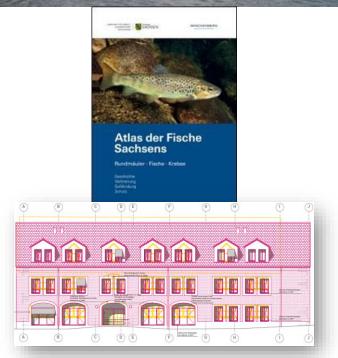
Credo - Zuchtarbeit bei Karpfen

In Anlehnung an Füllner et al. (2016): Abschlussbericht Herkunftsvergleich Karpfen)

- Ausschließlich Massenselektion wirklicher Zuchtfortschritt der zu wirtschaftlicheren und konkurrenzfähigeren Merkmalen wird z.Z. in Deutschland kaum generiert
- I Die ständige Karpfenzüchtung bleibt primär Aufgabe der Vermehrungsbetriebe
- I Der für die Vermehrung gehaltene und eingesetzte Laichfischbestand sollte **nicht zu klein** sein
- I Die Zuchtausauswahl sollte primär nach morphometrischen Kriterien erfolgen
- I Spiegelkarpfen reinerbig vermehren → auf schwach beschuppten Karpfen mit einer dorsalen Schuppenreihe und einzelnen Streuschuppen an den Flossenansätzen kören.
- Laichfischbestände, die in ihrer Lebenszeit bereits mit dem KHV Kontakt hatten, sind nach Möglichkeit zu erhalten.
- Für großen Vermehrungsbetrieben (Bruthäusern) wird empfohlen
 - Erzeugung von Gebrauchskarpfenbrut Rogener und Milchner jeweils aus separat gehaltenen Zuchtlinien zu nutzen – Minimierung von Inzuchteffekten
 - Etablierung einer detaillierten Leistungsprüfung, Zuchtdokumentation und Zuchtwertschätzung für die Auswahl der Laichfische.
 - I Die Anwendung von genomischen Methoden zur Zuchtauswahl prüfen
- Auf reinerbige Vermehrung von Spiegel- und Schuppenkarpfen ist zu achten.
- I Vermehrungsbetrieb oder Kooperationen von Zuchtbetrieben sollten **individuelle Zuchtziele / Zuchtprogramme** verfolgen → Wachstumsleistungen, Vitalität, Futterverwertung, Krankheitsresistenz, ...

Grundlagen der Züchtung bei Nutztieren

Fachtag Aquakultur und Fischerei am 28.02.2023 in Königswartha


Dr. Uwe Bergfeld

#Impressionen Königswartha

Landwirtschaft in Sachsen kompetent und verantwortungsvoll

#Impressionen Königswartha

Landwirtschaft in Sachsen kompetent und verantwortungsvoll

#Impressionen Königswartha

Meisterschüler Sander Fuhrmann am 26.11.2021 im "Riverboat"

Abschluss Fischwirtschaftsmeisterlehrgang in der Dreikönigskirche

